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Abstract  

Crashes at any particular transport network location consist of a chain of events arising from 

a multitude of potential causes and/or contributing factors whose nature is likely to reflect 

geometric characteristics of the road, spatial effects of the surrounding environment, and 

human behavioural factors. It is postulated that these potential contributing factors do not 

arise from the same underlying risk process, and thus should be explicitly modelled and 

understood. The state of the practice in road safety network management applies a safety 

performance function that represents a single risk process to explain crash variability across 

network sites. This study aims to elucidate the importance of differentiating among various 

underlying risk processes contributing to the observed crash count at any particular network 

location. To demonstrate the principle of this theoretical and corresponding methodological 

approach, the study explores engineering (e.g. segment length, speed limit) and unobserved 

spatial factors (e.g. climatic factors, presence of schools) as two explicit sources of crash 

contributing factors. A Bayesian Latent Class (BLC) analysis is used to explore these two 

sources and to incorporate prior information about their contribution to crash occurrence. The 

methodology is applied to the state controlled roads in Queensland, Australia and the results 

are compared with the traditional Negative Binomial (NB) model. A comparison of goodness 

of fit measures indicates that the model with a double risk process outperforms the single risk 

process NB model, and thus indicating the need for further research to capture all the three 

crash generation processes into the SPFs.  

Introduction 

Efficient management of resources allocated to reduce dramatic costs of vehicular crashes 

requires an in-depth understanding of crash causation process. It is widely accepted that 

crashes at any particular location of the transport network are the results of a single chain of 

events arising from a multitude of potential causes and/or contributing factors (Washington & 

Haque, 2013). In such a chain, however, different causes may not necessarily originate from 

the same sources and they may also have varied contributions to crash occurrence. The nature 

of crash contributing factors is likely to reflect geometric characteristics of the road, spatial 

effects arising from features of the surrounding environment, and human behavioural factors. 

These three sources can influence crash occurrence via unique yet interrelated underlying 

avenues or risk processes. Thus, a primary consequence of postulating a single unique risk 

process is that the influence of each separated risk process on the final outcome (crash) is not 

differentiated and may be mistakenly associated to the incorrect sources of crash causal 
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factors. Nevertheless, the state of the practice in road safety network management applies a 

Safety Performance Function (SPF) that represents the single risk process to explain crash 

variability across network sites and thus is incapable of linking various portions of total 

observed crashes caused by separate sources of causal factors (Washington & Haque, 2013). 

The first attempts in the literature to understand crash causation process emerged by 

modelling crash risk based on several independent explanatory variables (Hauer, 1986). 

Crash Prediction Models (CPM) or Safety Performance Functions (SPFs) were developed to 

correlate crash contributing factors as explanatory variables with the total observed crash 

count to identify crash risk (Hauer, 1986, 1992, 1997; Joshua & Garber, 1990; Miaou, Hu, 

Wright, Rathi, & Davis, 1992; Miaou & Lum, 1993a, 1993b). However, this process was 

based on the fundamental assumption that a multitude of crash contributing factors operate in 

a single chain consisting of a series of events which ultimately lead to crash occurrence.  

Accordingly, researchers tried to explore the relationship between crashes and variety of 

roadway geometric characteristics following a single crash generating process (Ardekani, 

Hauer, & Jamei, 1992; Lyon, Oh, Persaud, Washington, & Bared, 2003; Oh, Lyon, 

Washington, Persaud, & Bared, 2003; Vogt & Bared, 1998). Although it was recognised very 

early in the literature that crash contributing factors may originate from different sources such 

as climate conditions in addition to roadway geometric features (Hauer, 1986, 1997), a 

separation of such sources was largely ignored in crash risk modelling. Later, it was 

confirmed that spatial effects arising from features of the surrounding environment contribute 

to crash occurrence as well (Aguero-Valverde & Jovanis, 2006; Huang & Abdel-Aty, 2010; 

Mitra & Washington, 2012; Qin & Reyes, 2011; Yasmin & Eluru). However, SPFs still 

followed a single crash generating process. The evolution of crash risk modelling continued 

to progress mainly in refining the statistical shortcomings of the models. Such vast advances 

have been structured around the underlying assumption that crashes arise from a single 

unique risk process.  

This study aims to elucidate the importance of differentiating among various underlying risk 

processes contributing to observed crash counts at any particular network location. It is 

postulated that potential crash contributing factors arise from three different underlying 

processes, including roadway geometric, spatial, and human behavioural factors. To 

demonstrate the principle of this theoretical and corresponding methodological approach, this 

study attempts to model two crash generating processes to initiate the multiple unique risk 

process models. In particular, this study explores engineering and unobserved spatial factors 

as two explicit sources of crash contributing factors, leaving the human behavioural factors as 

the next step of this research to further increase model complexities and improves models 

performances. A Bayesian Latent Class (BLC) analysis is used to investigate these two 

sources and to incorporate prior information about their contribution to crash occurrence. The 

methodology is applied to the state controlled roads in Queensland, Australia and the results 

are compared with the traditional Negative Binomial model. 
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Methodology  

In order to explicitly assess the separated underlying risk processes, it is required to establish 

two separate SPFs correlating the predicted means of crash counts in each process (µ1 and µ2) 

with two different sets of covariates: 

µ1 = 𝐹1
𝛼1𝑒(𝛼3𝑋3+𝛼4𝑋4+𝛼5𝑋5+⋯ )𝑒(𝜀𝑖1)                             Equation [1] 

µ2 = 𝐹1
𝛽1𝑒(𝛽3𝑍3+𝛽4𝑍4+𝛽5𝑍5+⋯ ) 𝑒(𝜀𝑖2)                   Equation [2]             

where F1  is the measure of exposure, Xi and Zi are explanatory variables for each distinct 

risk process and αi and βi are unknown regression parameters. To incorporate randomness 

into the models, random terms (εi1 and εi2) are added to SPFs. To account for unobserved 

heterogeneities, these random terms are allowed to vary across observations by assigning a 

Multivariate Normal distribution as follows:  

εi ~ MN (ƹ , ∑)    where   εi = [
𝜀𝑖1

𝜀𝑖2
]   ,   ƹ = [

ƹ1

ƹ2
]    and   ∑ =  [

𝜎11 𝜎12

𝜎21 𝜎22
]       

where ƹ is the vector of mean values and ƹ1 and ƹ2 are the mean values for random terms 

respectively. It should be mentioned that the above specification of multivariate distribution 

accounts for possible correlations between the two risk processes. 

Each of the abovementioned predicated means accounts for a proportion (w1 and w2 

respectively) of the total predicted mean of crash counts (µ):   

µ 1 = w1 µ                 

µ 2 = w2 µ 

w1 + w2 = 1 

In other words, the total predicted mean of crash counts is a weighted sum of the two 

aforementioned means: 

µ = 
1

2 𝑤1
 µ1 + 

1

2 𝑤2
 µ2             Equation [3] 

where 
1

2 𝑤1
 and 

1

2 𝑤2
 are the predicted weights associated to each distinct risk process. 

Accordingly, the total observed crash counts (Y) which follows a Poisson distribution with 

the mean of µ is a weighted sum of two latent (underlying) crash counts (Y1 and Y2); each 

one  representing a proportion (W1 and W2 respectively) of the total observed crash counts:  

Y1 = W1 Y 

Y2 = W2 Y 

W1 + W2 = 1 

Or equivalently: 
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Y = 
1

2 𝑊1
Y1 +  

1 

2 𝑊2
Y2            Equation [4] 

where 
1

2 𝑊1
 and 

1

2 𝑊2
 are the observed weights associated with each distinct risk process. 

Indeed, the proposed methodology utilises the BLC analysis and prior knowledge in order to 

determine wi as an estimate of Wi which illustrates the contribution of each risk process to the 

total observed crash counts. Having been assigned a distribution with known parameters 

(known from the prior knowledge), these weights are allowed to vary across observations. 

The proposed model is calibrated in a Bayesian framework where the posterior is equal to the 

product of likelihood: P(Y| µ) and prior: π(µ). Markov Chain Monte Carlo (MCMC) 

simulation is used to estimate the entire unknown parameters including wi, αi, βi, ƹi and σij 

and to make inferences about the posterior.  

Finally, the Bayesian Information Criterion (BIC) is used to compare the performance of 

models:   

BIC = -2 Log Likelihood + p Log (n)      Equation [5] 

where p and n are the number of estimated parameters and the number of observations 

respectively and the model with a lower DIC and BIC values outperforms the other models.    

Data 

The methodology is applied to the network of state controlled roads in Queensland, Australia 

consisting of 4,913 roadway segments and approximately 33,510 kilometres in length. Five 

years of crash data (2010 to 2014) with a total count of 18,484 crashes associated to the 

network were analysed. All crash severities were included (fatal, hospitalisation, medical 

treatment, minor injury and Property Damage Only).  

Roadway geometrical characteristics were collected from the Queensland Transport and Main 

Roads Department in GIS formats. The database included segments length, number of lanes, 

Average Annual Daily Traffic (AADT), percentage of Heavy Vehicle (HV) traffic, Level Of 

Service (LOS), segments terrain (horizontal and vertical alignment), pavement seal 

conditions, speed limit, pavement rutting, roughness, longitudinal and alligator cracking 

conditions. The number of lanes did not vary significantly across observations and thus was 

not included in the model. The Average Annual Daily Traffic (AADT) of road segments was 

employed as the exposure variable. LOS is defined as a qualitative measure of traffic service 

in the road which scales from A to F (Garber & Hoel, 2014) as in the following: 

LOS A: Highest quality of service; motor vehicles drive at their desired speed 

LOS B: Lower quality of service; the passing demand and passing capacity are almost equal 

LOS C: Formation of platoons and platoon size; passing opportunities are severely decreased. 

LOS D: Unstable flow and incomplete passing manoeuvres 

LOS E: Impossible passing; longer and more frequent platoons; unstable operating conditions  

LOS F: Full congestion; demand exceeding capacity. 
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Moreover, it was found that pavement rutting, roughness, longitudinal and alligator cracking 

conditions were all highly correlated and so to avoid multicollinearity, only pavement rutting 

conditions were included in the model. Pavement rutting is defined as permanent 

deformations of the pavement in the wheel paths. The maximum allowable rutting is 12mm 

and thus segments rutting was defined as between 0 (the smoothest pavement surface) and 

12mm (the roughest surface). Dummy values were assigned to the speed limit, general terrain 

and pavement seal conditions of road segments to create associated categorical variables. 

Speed limit was categorised into three groups including low speed limit (Speed 

Limit<50Km/hr), medium speed limit (50 <Speed Limit<100Km/hr) and high speed limit 

(Speed Limit>100Km/hr). Terrain condition includes two categories: level and 

mountainous/rolling. Surface seal condition also includes two categories: sealed and 

unsealed.  

Many studies have emphasised the influence of spatial features of the transport network, such 

as precipitation, number of rainy days, number of snowy days, presence of college or 

university within a certain distance of road segments, on crash occurrence (Aguero-Valverde 

& Jovanis, 2006; Mitra & Washington, 2012). To investigate the effects of such factors, 

climate data were collected from Australian Bureau of Meteorology for the associated 

network. Climatic factors included average yearly rainfall (over 5mm), average rainy days 

per year, average daily solar exposure as well as average sunshine hours (to capture glare 

effects of sunshine on drivers), average monthly wind speed, and average thunder days per 

year. To better capture the effects of rain and solar conditions and facilitate the interpretation 

of rainfall and days of rain as well as solar exposure and sunshine hours, two new variables 

were established to capture the combined effects of these variables. The former was achieved 

via dividing rainfall by number of rainy days per year and the latter by dividing solar 

exposure by number of sunshine hours per day, and these new variables were named as ‘rain 

conditions’ and ‘solar conditions’, respectively.  

To incorporate the effects of adjacent land use patterns, the geographic locations of schools 

and population centres were collected from the Queensland Spatial Catalogue in GIS formats. 

As there are many vulnerable road users (pedestrians) in the vicinity of such centres, their 

proximity to road segments may increase the risk of crash occurrence. Moreover, the 

intensity of bridges and culverts (number of bridges and culverts per kilometre) were also 

derived from the geometrical database. Such factors can influence the concentration and 

cautiousness of drivers which can be interpreted as unobserved spatial effects of the 

surrounding environment.  Eventually, engineering and spatial data were merged using a GIS 

platform based on spatial coordinates of roadway segments. Table 1 presents descriptive 

statistics of the study variables.  
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Table 1. Descriptive Information of study variables 

Variable Minimum Maximum Mean 
Standard 

Deviation 

Crash 0 150 4 8 

Length (Km) 0 63.4 6.8 7.7 

AADT (Vehicles/Day) 0 72405 7594 11753 

Percent of HV Traffic 1 92 16.7 10.9 

Rutting 0 11.2 3.7 1.6 

Rainfall (mm) 0 8000 1276.4 976.5 

Number of Rainy Days  

per Year 
0 75 36 11 

Solar Exposure (MJ/m2) 0 24 20.8 3.2 

Sunshine Hours  

per Day 
0 10 8.3 0.5 

Number of Thunder Days  

per Year 
0 80 25 6 

Wind Speed (Km/hr) 0 26 11.6 5.4 

Intensity of Major Culverts  

per Kilometre 
0 76.2 0.4 3.6 

Intensity of Minor Culverts  

per Kilometre 
0 571.4 3.6 21.1 

Intensity of Bridges  

per 10 Kilometres 
0 9.5 0.1 0.4 

Intensity of Educational Centres  

per 10 Kilometres  
0 16 0 0.35 

Proximity to population centres 

(Km) 
0 1456.7 54 146.5 

Categorical Variables Observation Frequency Sample Share 

High Speed Limit (>100 Km/hr) 2442 50% 

Medium Speed Limit  

(>50 and <100 Km/hr) 
2386 48% 

Low Speed Limit (<50 Km/hr) 85 2% 

Terrain1   866 18% 

Pavement Seal Conditions2 4670 95% 

LOS3 3370 68% 
10 (if Level), 1(if rolling and/or mountainous) 
20 (if un-sealed), 1 (if sealed)   
30 (if A, B, C or D), 1(if E or F) 

Results and Discussion 

Negative Binomial (NB) regression model is the widely accepted safety performance 

function to establish the relationship between traffic crashes and contributing factors (Poch & 

Mannering, 1996). Thus, estimating a traditional NB model with a single risk process was the 

first task in this study. Table 2 presents the results of NB model estimated in Bayesian 

framework. According to Table 2, the 90% credible intervals for the dispersion parameter (Φ) 

of NB model does not include zero. This indicates the presence of significant over-dispersion 

in crash data and thus it is necessary to utilise the NB model to account for such an over-

dispersion. Thirteen variables out of all factors used in the study were significant in the NB 

model with 90% certainty. Some of these variables had positive effects, while others had 

negative effects on the total crash count. The AADT, length and terrain configuration of road 

segments had positive coefficients indicating that greater volume of traffic, longer road 
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segments and rolling and/or mountainous terrain results in higher number of crashes. 

Furthermore, positive coefficients for low and medium speed limits along road segments 

intuitively indicated that compared with motorways, arterial roads are more associated with 

traffic crashes. The percentage of heavy vehicles, rain conditions, solar conditions, average 

number of thunder days per year, wind speed, intensity of bridges and schools had negative 

coefficients, indicating that these variables have decreasing effects on the total crash count. In 

adverse weather conditions, drivers may adapt and drive more cautiously, which might have 

resulted in negative association with total crashes. Pavement seal conditions and LOS also 

had negative coefficients, indicating that changing from unsealed to sealed and from 

congested to free flow conditions result in less crashes.   

Table 2. Regression results of the Traditional NB model with a single risk process 

Variables Mean 
Std. 

Deviation 

Bayesian Credible Interval (BCI) 

10% Value                  90% Value 

Constant -9.664 0.509 -10.290 -9.122 

AADT 0.755 0.026 0.722 0.786 

Length 0.665 0.025 0.634 0.694 

Percent of HV -0.030 0.002 -0.032 -0.027 

Terrain 0.083 0.039 0.033 0.133 

Pavement Seal -0.289 0.098 -0.430 -0.178 

Low Speed Limit 0.845 0.144 0.661 1.031 

Medium Speed Limit 0.732 0.035 0.687 0.777 

LOS -0.290 0.043 -0.346 -0.235 

Rain Conditions -0.123 0.095 -0.247 -0.002 

Solar Conditions -0.068 0.034 -0.115 -0.025 

Thunder Days -0.371 0.193 -0.609 -0.107 

Wind Speed -0.234 0.071 -0.326 -0.140 

Intensity of Bridges -2.424 0.667 -3.298 -1.566 

Intensity of Schools -1.027 0.448 -1.603 -0.454 

Φ 1.961 0.079 1.860 2.064 

Number of Observations 

(Sample Size) 
4913 

Number of Parameters 16 

Log Likelihood -9145 

Bayesian Information 

Criteria (BIC) 
18426 

 

The next step was to apply the multiple generating process SPFs on the data. Crash 

contributing factors were categorised into two sources: engineering factors and spatial 

factors. Engineering factors included segments length, percentage of heavy vehicles, general 

terrain, pavement surface conditions, speed limit, LOS and rutting conditions of road 

segments. Spatial factors included rain conditions, solar conditions, average number of 

thunder days per year, average annual wind speed, number of major and minor culverts as 

well as number of bridges along the road segments, intensity of educational centres, and the 

proximity of road segments to population centres. Since exposure factors play a vital role in 

crash occurrence models, the exposure variable and its coefficients were set to be the same in 

both risk processes following the formulation in eq. 6. This implies that there exists a base 
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crash count associated with exposure, irrespective of any other crash contributing factors. As 

a result, for the multiple risk process model eq. 6 is simplified to the following: 

 µ = Fα1 × (
1

2 ω1
 µ1 + 

1

2  ω2
 µ2)       Equation [6] 

where: 

µ1 = 𝑒(𝛼3𝑋3+𝛼4𝑋4+𝛼5𝑋5+⋯ )𝑒(𝜀𝑖1)                

µ2 =  𝑒(𝛽3𝑍3+𝛽4𝑍4+𝛽5𝑍5+⋯ ) 𝑒(𝜀𝑖2)                                  

    

F is the exposure variable and the remaining notations are the same as previously stated. 

According to the literature (Washington & Haque, 2013), unobserved spatial factors account 

for approximately 5 to 10 percent of all crashes and thus a uniform distribution ranging from 

0.05 to 0.15 was used in this study as a prior distribution for the proportion of spatial risk 

process. Although the MCMC simulation resulted in Markov chains which were stabilised 

and converged for most of the regression parameters, the ultimate convergence of the model 

needs to be improved in future efforts. The regression results for the multiple risk process 

model are presented in Table 3.  

A comparison of the two tables shows that the traditional NB regression analysis with a 

single risk process results in a model with Log likelihood of -9145 while the Log likelihood 

of the multiple risk process model is -7335, demonstrating 20% improvement compared to 

the traditional NB model. It should be noted, however, that separating two generating 

processes leads to an increase in the number of parameters to be estimated. While the number 

of observations in the three models is 4913, the NB and the multiple risk process models have 

16 and 20 parameters to be estimated respectively. According to Tables 2 and 3, the BIC 

value of the multiple risk process model (14840) is smaller than the BIC value of the 

traditional NB model (18426) which clearly shows the dominance of the former model in 

goodness of fit.   

The prominent result of this study, however, is that according to Table 3, crash contributing 

factors originate from two distinct sources associated with two latent risk processes including 

engineering and spatial factors. The mean proportions of these two sources across 

observations (wi) are 90% and 10% respectively. The variance and confidence intervals of 

such weights show that the contribution of such sources is significant with 90% certainty. 

The coefficients of all significant variables excluding the average number of thunder days per 

year had the same sign in both models. However, the NB model resulted in a negative 

coefficient for the average number of thunder days while separating the two risk processes 

caused the coefficient sign to become positive. This result could be considered more intuitive 

in which increasing the number of thunder days per year results in an increased crash counts 

at road segments. 
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Table 3. Regression results of the multiple risk process model 

 
Mean 

Std. 

Deviation 

Bayesian Credible Interval (BCI) 

10% Value               90% Value 

Exposure Factor 

AADT 0.685 0.021 0.663 0.713 

Engineering Factors 

Constant  -9.099 0.270 -9.393 -8.810 

Length 0.664 0.010 0.652 0.677 

Percent of HV -0.037 0.002 -0.040 -0.034 

Terrain 0.054 0.038 0.005 0.103 

Pavement Seal  -0.332 0.043 -0.391 -0.278 

Low Speed Limit 0.675 0.148 0.486 0.862 

Medium Speed Limit 0.696 0.036 0.651 0.744 

LOS -0.204 0.045 -0.261 -0.148 

Spatial Factors 

Constant  -11.590 1.512 -13.780 -9.970 

Solar Conditions -1.540 2.107 -1.809 -0.817 

Thunder Days 5.648 3.341 2.261 10.380 

Wind Speed -9.324 4.210 -14.850 -5.127 

Random Terms 

ε1 0.059 0.053 0.007 0.137 

ε2 0.761 0.526 0.142 1.521 

σ11 4.182 1.713 2.551 7.015 

σ22 0.326 0.127 0.189 0.490 

σ12 = σ21 -0.767 0.410 -1.383 -0.321 

Average Risk Process Weighs 

w1 0.900 0.000 0.900 0.901 

w2 0.100 0.000 0.099 0.101 

Number of Observations 

(Sample Size) 
4913 

Number of Parameters 20 

Log Likelihood -7335 

Bayesian Information 

Criteria (BIC) 
14840 

 

A further assessment of the mean values for the regression coefficients indicated that while 

significant engineering variables had the same increasing/decreasing effect in both models, 

their coefficients changed very slightly in magnitude from one model to another. However, 

separating the two risk processes caused a dramatic change in the coefficient magnitudes of 

solar conditions (from -0.068 to -1.540), average number of thunder days per year (from -

0.371 to 5.648) and wind speed (from -0.234 to -9.324). Bearing in mind that this dramatic 

change occurred in the proposed model where six other spatial variables became 

insignificant, it can be inferred that separating the two risk processes caused the three 

previously mentioned variables to absorb the majority of spatial effects. The BCI values for 

ε1, ε2, σ11 and σ22 indicated that the random terms and their variance were significant with 

90% certainty for each distinct risk process. It is noteworthy that the BCI values for σ12 and 

σ21 did not include zero, indicating that there is a correlation between the two risk processes. 
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This finding could be indicative of the fact that the two risk processes were distinct and yet 

interrelated. 

Conclusions 

This study aimed to demonstrate the principle of a multiple risk process mechanism for crash 

causation and its corresponding methodological approach. The objective was achieved by 

differentiating between two distinct crash generating processes including engineering and 

unobserved spatial factors. A traditional NB count model was initially estimated for the 

means of comparison with the new proposed multiple risk process model. 

It was concluded that the crash data is over-dispersed and thus the traditional NB model is 

appropriate to capture the over-dispersion. A comparison of BIC values for the NB and the 

multiple risk process models clearly showed the dominance of the latter in terms of goodness 

of fit. Further, a comparison of significant variables indicated that while many spatial factors 

were not significant when separately modelled, solar conditions, average number of thunder 

days and wind speed were significant in the spatial risk process. Moreover, significant 

changes occurred in coefficient magnitudes of such variables when spatial factors are 

separately modelled. This clearly shows that these three spatial factors play influential roles 

among other spatial variables in the spatial risk process. Furthermore, the decreasing effect of 

average number of thunder days per year on total crash counts changed to an increasing effect 

after separating the two risk processes, consistent with expectations. 

In summary, it can be seen that the performance of SPFs in goodness of fit is significantly 

improved by separating the two distinct processes. Further, the multiple risk process SPF 

methodology illuminates the true significance and influence of crash contributing factors on 

crash occurrence. Future research should include all three crash generating processes, 

including engineering factors, spatial factors, and human behavioural influence, into the SPFs 

and demonstrate their implications for black spot identifications. 

Limitations 

The scope of this research was limited to investigating the influence of postulating two risk 

processes including engineering and spatial factors on the crash occurrence over the state 

controlled road network in Queensland. Human behavioural data such as gender, age, and 

possession of driving licence is directly associated with the third risk generating process 

(behavioural factors) which is out of the current scope of this research. Although a 

comprehensive assessment of crash causation process should include all three distinct sources 

of crash contributing factors, i.e. roadway geometric, spatial, and human behavioural factors, 

this study aimed to demonstrate the principle of postulating multiple risk processes for crash 

causation and corresponding methodological approach. Future research efforts should expand 

the proposed model and include all three underlying processes of crash occurrence. 

Moreover, vehicle characteristics may be considered as another source of crash contributing 

factors. However, mitigating such factors is beyond the scope of road agencies and thus it 

was not dealt with in this context.  
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The focus of the study was on the development of a theoretical model and thus a 

representative dataset was collected for the state controlled roads in Queensland to validate 

the proposed model with real-world data. Although the network only consisted of roadway 

segments (excluding intersections), the distinction between rural and urban roads was not 

available in collected data. However, geometric characteristics of the segments (e.g. length 

and AADT) partially accounted for the principal differences between rural and non-rural 

segments. Future research should apply the proposed model on a more extensive dataset that 

consists of road segments in urban and rural road environment separately and includes a wide 

range of roadway geometric and traffic control characteristics.  

Furthermore, it should be noted that the analysis is still in its initial phase and requires more 

complex modelling techniques for better MCMC convergence, different sets of distribution 

assumption for weights of latent risk processes, and exploration of other possibilities like a 

random parameter (RP) model. RP models may potentially improve the analysis due to the 

fact that observations are broadly distributed over the Queensland state and thus assuming all 

parameters as fixed for the entire population may influence the results.  
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